Search This Blog

THE BEST SCIENTIFIC PUBLICATIONS - NASA to Announce Latest.......


NASA to Announce Latest Kepler Discoveries 


                                                        NASA's planet-hunter, the Kepler Space Telescope
                                                        Credits: NASA





NASA will host a news teleconference at 1 p.m. EDT Tuesday, May 10 to announce the latest discoveries made by its planet-hunting mission, the Kepler Space Telescope.
The briefing participants are:
  • Paul Hertz, Astrophysics Division director at NASA Headquarters in Washington
  • Timothy Morton, associate research scholar at Princeton University in New Jersey
  • Natalie Batalha, Kepler mission scientist at NASA's Ames Research Center in Moffett Field, California
  • Charlie Sobeck, Kepler/K2 mission manager at Ames
For dial-in information, media must e-mail their name, affiliation and telephone number to Felicia Chou at felicia.chou@nasa.gov no later than 11 a.m. Tuesday. Questions can be submitted on Twitter during the teleconference using the hashtag #askNASA.
The teleconference audio and visuals will be streamed live at:
When Kepler was launched in March 2009, scientists did not know how common planets were outside our solar system. Thanks to Kepler’s treasure trove of discoveries, astronomers now believe there may be at least one planet orbiting every star in the sky.
Kepler completed its prime mission in 2012, and collected data for an additional year in an extended mission. In 2014, the spacecraft began a new extended mission called K2. K2 continues the search for exoplanets while introducing new research opportunities to study young stars, supernovae and other cosmic phenomena.
For more information about NASA’s Kepler mission, visit:
-end-
Felicia Chou
Headquarters, Washington
202-358-0257
felicia.chou@nasa.gov
Michele Johnson
Ames Research Center, Moffett Field, Calif.
650-604-6982
michele.johnson@nasa.gov
Last Updated: May 4, 2016
Editor: Karen Northon
Tags:  Distant Planets, Kepler and K2



NASA’s K2 Finds Dead Star 

Vaporizing a Mini “Planet”










Scientists using NASA’s repurposed Kepler space telescope, known as the K2 mission, have uncovered strong evidence of a tiny, rocky object being torn apart as it spirals around a white dwarf star. This discovery validates a long-held theory that white dwarfs are capable of cannibalizing possible remnant planets that have survived within its solar system.
“We are for the first time witnessing a miniature “planet” ripped apart by intense gravity, being vaporized by starlight and raining rocky material onto its star,” said Andrew Vanderburg, graduate student from the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts, and lead author of the paper published in Nature.
K2 finds white dwarf devouring mini planet
In this artist’s conception, a tiny rocky object vaporizes as it orbits a white dwarf star. Astronomers have detected the first planetary object transiting a white dwarf using data from the K2 mission. Slowly the object will disintegrate, leaving a dusting of metals on the surface of the star.
Credits: CfA/Mark A. Garlick
As stars like our sun age, they puff up into red giants and then gradually lose about half their mass, shrinking down to 1/100th of their original size to roughly the size of Earth. This dead, dense star remnant is called a white dwarf.
The devastated planetesimal, or cosmic object formed from dust, rock, and other materials, is estimated to be the size of a large asteroid, and is the first planetary object to be confirmed transiting a white dwarf. It orbits its white dwarf, WD 1145+017, once every 4.5 hours. This orbital period places it extremely close to the white dwarf and its searing heat and shearing gravitational force.
During its first observing campaign from May 30, 2014 to Aug. 21, 2014, K2 trained its gaze on a patch of sky in the constellation Virgo, measuring the minuscule change in brightness of the distant white dwarf. When an object transits or passes in front of a star from the vantage point of the space telescope, a dip in starlight is recorded. The periodic dimming of starlight indicates the presence of an object in orbit about the star.
Shape of Light Curve
The diagram depicts a model of light curve shapes. The red line indicates the symmetric shape of a hypothetical Earth-size planet transit while the blue line is the asymmetric shape of the tiny disintegrating planet and its comet-like trailing dusty tail. The black dots are measurements recorded by the K2 mission of WD 1145+017.
Credits: CfA/A. Vanderburg
A research team led by Vanderburg found an unusual, but vaguely familiar pattern in the data. While there was a prominent dip in brightness occurring every 4.5 hours, blocking up to 40 percent of the white dwarf's light, the transit signal of the tiny planet did not exhibit the typical symmetric U-shaped pattern. It showed an asymmetric elongated slope pattern that would indicate the presence of a comet-like tail. Together these features indicated a ring of dusty debris circling the white dwarf, and what could be the signature of a small planet being vaporized.
“The eureka moment of discovery came on the last night of observation with a sudden realization of what was going around the white dwarf. The shape and changing depth of the transit were undeniable signatures,” said Vanderburg.
In addition to the strangely shaped transits, Vanderburg and his team found signs of heavier elements polluting the atmosphere of WD 1145+017, as predicted by theory.
Due to intense gravity, white dwarfs are expected to have chemically pure surfaces, covered only with light elements of helium and hydrogen. For years, researchers have found evidence that some white dwarf atmospheres are polluted with traces of heavier elements such as calcium, silicon, magnesium and iron. Scientists have long suspected that the source of this pollution was an asteroid or a small planet being torn apart by the white dwarf's intense gravity.
Analysis of the star's atmospheric composition was conducted using observations made by the University of Arizona's MMT Observatory. 
“For the last decade we’ve suspected that white dwarf stars were feeding on the remains of rocky objects, and this result may be the smoking gun we’re looking for,” said Fergal Mullally, staff scientist of K2 at SETI and NASA’s Ames Research Center in Moffett Field, California. “However, there's still a lot more work to be done figuring out the history of this system.”
“This discovery highlights the power and serendipitous nature of K2. The science community has full access to K2 observations and is using these data to make a wide range of unique discoveries across the full range of astrophysics phenomena,” said Steve Howell, K2 project scientist at Ames.
Ames manages the Kepler and K2 missions for NASA’s Science Mission Directorate. NASA's Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.
For more information about the Kepler and K2 missions, visit:
-end-
Media inquiries:
Michele Johnson
Ames Research Center, Moffett Field, Calif.
650-604-6982
michele.johnson@nasa.gov
Last Updated: Oct. 23, 2015
Editor: Michele Johnson



NASA’s Kepler Mission Discovers Bigger, Older Cousin to Earth






Kepler-452b and Earth
This artist's concept compares Earth (left) to the new planet, called Kepler-452b, which is about 60 percent larger in diameter.
Credits: NASA/JPL-Caltech/T. Pyle
Scale of Kepler-452b System
This size and scale of the Kepler-452 system compared alongside the Kepler-186 system and the solar system. Kepler-186 is a miniature solar system that would fit entirely inside the orbit of Mercury.
Credits: NASA/JPL-CalTech/R. Hurt
Kepler-452 in space
This artist's concept depicts one possible appearance of the planet Kepler-452b, the first near-Earth-size world to be found in the habitable zone of a star that is similar to our sun.
Credits: NASA/JPL-Caltech/T. Pyle
NASA's Kepler mission has confirmed the first near-Earth-size planet in the “habitable zone” around a sun-like star. This discovery and the introduction of 11 other new small habitable zone candidate planets mark another milestone in the journey to finding another “Earth.” 
The newly discovered Kepler-452b is the smallest planet to date discovered orbiting in the habitable zone -- the area around a star where liquid water could pool on the surface of an orbiting planet -- of a G2-type star, like our sun. The confirmation of Kepler-452b brings the total number of confirmed planets to 1,030.
"On the 20th anniversary year of the discovery that proved other suns host planets, the Kepler exoplanet explorer has discovered a planet and star which most closely resemble the Earth and our Sun," said John Grunsfeld, associate administrator of NASA’s Science Mission Directorate at the agency’s headquarters in Washington. “This exciting result brings us one step closer to finding an Earth 2.0."
Kepler-452b is 60 percent larger in diameter than Earth and is considered a super-Earth-size planet. While its mass and composition are not yet determined, previous research suggests that planets the size of Kepler-452b have a good chance of being rocky.
Twelve New Kepler HZ Candidates Highlighted are 12 new planet candidates from the seventh Kepler planet candidate catalog that are less than twice the size of Earth and orbit in the stars' habitable zone
Credits: NASA Ames/W. Stenzel
Kepler Planet Candidates July 2015
There are 4,696 planet candidates now known with the release of the seventh Kepler planet candidate catalog - an increase of 521 since the release of the previous catalog in January 2015.
Credits: NASA/W. Stenzel
While Kepler-452b is larger than Earth, its 385-day orbit is only 5 percent longer. The planet is 5 percent farther from its parent star Kepler-452 than Earth is from the Sun. Kepler-452 is 6 billion years old, 1.5 billion years older than our sun, has the same temperature, and is 20 percent brighter and has a diameter 10 percent larger.
“We can think of Kepler-452b as an older, bigger cousin to Earth, providing an opportunity to understand and reflect upon Earth’s evolving environment," said Jon Jenkins, Kepler data analysis lead at NASA's Ames Research Center in Moffett Field, California, who led the team that discovered Kepler-452b. "It’s awe-inspiring to consider that this planet has spent 6 billion years in the habitable zone of its star; longer than Earth. That’s substantial opportunity for life to arise, should all the necessary ingredients and conditions for life exist on this planet.”
To help confirm the finding and better determine the properties of the Kepler-452 system, the team conducted ground-based observations at the University of Texas at Austin's McDonald Observatory, the Fred Lawrence Whipple Observatory on Mt. Hopkins, Arizona, and the W. M. Keck Observatory atop Mauna Kea in Hawaii. These measurements were key for the researchers to confirm the planetary nature of Kepler-452b, to refine the size and brightness of its host star and to better pin down the size of the planet and its orbit.
The Kepler-452 system is located 1,400 light-years away in the constellation Cygnus. The research paper reporting this finding has been accepted for publication in The Astronomical Journal.
In addition to confirming Kepler-452b, the Kepler team has increased the number of new exoplanet candidates by 521 from their analysis of observations conducted from May 2009 to May 2013, raising the number of planet candidates detected by the Kepler mission to 4,696. Candidates require follow-up observations and analysis to verify they are actual planets.
Twelve of the new planet candidates have diameters between one to two times that of Earth, and orbit in their star's habitable zone. Of these, nine orbit stars that are similar to our sun in size and temperature.
“We've been able to fully automate our process of identifying planet candidates, which means we can finally assess every transit signal in the entire Kepler dataset quickly and uniformly,” said Jeff Coughlin, Kepler scientist at the SETI Institute in Mountain View, California, who led the analysis of a new candidate catalog. “This gives astronomers a statistically sound population of planet candidates to accurately determine the number of small, possibly rocky planets like Earth in our Milky Way galaxy.”
These findings, presented in the seventh Kepler Candidate Catalog, will be submitted for publication in the Astrophysical Journal. These findings are derived from data publicly available on the NASA Exoplanet Archive.
Scientists now are producing the last catalog based on the original Kepler mission’s four-year data set. The final analysis will be conducted using sophisticated software that is increasingly sensitive to the tiny telltale signatures of Earth-size planets.
Ames manages the Kepler and K2 missions for NASA’s Science Mission Directorate. NASA's Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.
For more information about the Kepler mission, visit:
A related feature story about other potentially habitable planets is online at:http://www.nasa.gov/jpl/finding-another-earth
-end-
Felicia Chou
Headquarters, Washington
202-358-0257
felicia.chou@nasa.gov
Michele Johnson
Ames Research Center, Moffett Field, Calif.
650-604-6982
michele.johnson@nasa.gov
Links:
Last Updated: April 5, 2016
Editor: Michele Johnson
Tags:  Ames Research Center, Distant Planets, Jet Propulsion Laboratory, Kepler and K2, Universe

Source - http://www.nasa.gov/